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 Introduction 

    Bismuth Vanidate (BiVO4) is an attractive photocatalyst 

because of its narrow band gap, high crystallinity, easy  

fabrication, photo and chemical stability, and low toxicity [1]. 

BiVO4 has a highly positive valence band (VB) potential (+2.45 

to -2.60 eV) and conduction band (CB) potential value that 

Abstract 

Although monoclinic scheelite bismuth vanadate (m-BiVO4) is a promising photocatalyst due to its low band gap (Eg = 2.4- 

2.6 eV), significant visible light absorption, and its valence band potential is positive enough for water splitting and pollutants 

degradation, it has some drawbacks hindering its sole usage in photocatalysis. These drawbacks include low surface conductivity, 

fast electron/hole (e-/h+) pair recombination, low surface area, and low solubility in the aqueous medium. Therefore, m-BiVO4 is 

composited with reduced graphene oxide (r-GO) to mitigate these drawbacks. r-GO has an extremely large surface area, a high 

electrical conductivity and can accept and trap electrons from m-BiVO4 via its delocalized conjugated 𝜋-system. Such traps lengthen 

the electron/hole (e-/h+) pair lifetime on m-BiVO4 increasing the photocatalytic reactions efficiency on its surface. In addition, the 

presence of oxygen-containing groups on r-GO helps anchor m-BiVO4 particles on the r-GO layer so the m-BiVO4 particles are 

more dispersed and display a larger surface area. These oxygenated groups ease the solubilization of anchored m-BiVO4 particles 

in water by forming hydrogen bonds. In this mini-review, m-BiVO4–r-GO composite applications in photocatalytic water splitting, 

pollutants degradation, and other reactions will be briefly discussed. Generally, these composites showed remarkable results in 

reactions that rely on the valence band holes of m-BiVO4, whereas the reactions that depend on conduction band electrons required 

morphology and size modification for the m-BiVO4 before its compositing with r-GO. 
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ranges from + 0.11 to - 0.05 eV. Both potentials are useful for 

photo-driven oxygen evolution, water splitting reactions, N2 

fixation, and degradation of organic pollutants [1-4]. The 

monoclinic scheelite (m-BiVO4) form has the lowest band gap 

(Eg) (2.4 eV) followed by tetragonal scheelite (2.6 eV) and 

tetragonal zircon (2.9 eV) structures [5]. Such low Eg values 

allow a broader visible light absorption and more probable 

photo-electrons formation. The low Eg is due to the coupling of 

Bi 6s2, 6p0 orbitals with the O2p orbitals of VO4
3- and 3d orbitals 

of V5+ causing destabilizing and stabilizing of the valence band 

maximum (VBM) and the conduction band maximum (CBM), 

respectively [6]. BiVO4, however, suffers from some drawbacks 

such as (i) low surface conductivity that causes the rapid 

recombination of photoproduced e-/h+ pair [7], (ii) a small 

surface area and pore volumes, making extensive photons 

absorption difficult due to low active sites density added to the 

reduced substrates adsorption, and (iii) BiVO4 undergoes 

agglomeration during photocatalysis which impedes its 

recyclability and further reduces its surface area [8, 9]. The 

BiVO4 recovery presents another obstacle because it could be 

degraded and become secondary contaminants in water [10]. 

Hence, to overcome these drawbacks, m-BiVO4 is doped with 

metals and non-metals, morphologically controlled, and coupled 

to another semiconductor forming heterojunctions to reduce the 

e-/h+ recombination. The small surface area and agglomeration 

are counteracted by supporting m-BiVO4 on a certain support-

forming a composite- to disperse it into smaller particles; and so 

surface area increases, and agglomeration is minimized. [11, 12]  

In this mini-review, we highlight the influences of compositing 

r-GO with m-BiVO4 on improving the m-BiVO4 photocatalytic 

activity in different applications. We started by showing the 

properties of graphene and why r-GO is preferably composited 

with m-BiVO4. Then, the mechanism by which r-GO enhances 

m-BiVO4 photocatalytic properties is shown. The applications of 

m-BiVO4/r-GO composite are ordered according to their 

frequent appearance in literature. Photocatalytic degradation of 

pollutants by this composite is first discussed followed by other 

applications including photocatalytic water splitting, nitrate 

formation, and CO2 reduction and photoesterification.  

BiVO4 - carbon support composite  

Carbon supports are classified dimensionally into zero 

dimensional (0D) (such as fullerenes), one dimensional (1D) 

(such as carbon nanotubes (CNT)), two dimensional (2D) (such 

as graphene family), and three dimensional (3D) structures (such 

as graphite) [13-15]. Carbon supports are merited by their 

boosted adsorption performance. They can reduce a 

semiconductor band gap and promote e-/h+ charge separation by 

the as-formed carbon-based Schottky-junction between the 

semiconductor and highly conductive nanocarbon supports [16]. 

More precisely, combining different carbon-rich materials with 

semiconductors produces interesting synergistic effects in 

addition to compensating for the drawbacks of the individual 

semiconductor materials. These effects include band gap 

narrowing, co-catalysis, increased adsorption and active sites, 

electron accepting and transporting channels [17]. 0D structures 

have a large surface area whereas 1D structures have a high 

aspect ratio and high electric conductivity [18, 19]. A 2D carbon 

nanosheet, such as graphene (a sp2-hybridized carbon) has 

significantly higher optical transmittance, conductivity (∼5000 

W m−1 K−1), electron mobility (200,000 cm2 V−1 s−1), theoretical 

specific surface area (∼2600 m2 g−1), and a more appropriate 

work function (4.42 eV) for H2 evolution than the 0D and 1D 

carbonaceous materials [20]. 2D combines the properties of 0D 

and 1D, adding to its greater interfacial contact. Although 

graphene has an extremely high surface area and electric and 

thermal conductivity due to its zero-band gap and extended sp2 

carbon hybridization, it can restack forming graphene aggregates 

that reduce the graphene surface area needed to support and 

disperse BiVO4. So, controlled graphene oxidation is aimed to 

acquire graphene oxygenated functional groups to bond to 

BiVO4 and disperse graphene in aqueous systems. Oxidation 

should be controlled otherwise the extreme oxidation can 

convert graphene to graphene oxide (GO) which is electrically 

insulating. Graphene is firstly oxidized to GO that is then 
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partially reduced to give reduced graphene oxide (r-GO). r-GO 

has graphene advantages and good water dispersibility [21].  

BiVO4-rGO  

The combination of BiVO4 and rGO has been widely shown 

to be a promising strategy for favoring the charge transfer and 

inhibiting the charge recombination process, thereby leading to 

boosted photocatalytic activity [22, 23]. Reduced graphene 

oxide (rGO) has been investigated more because it combines 

great adsorptive powers with the inherited properties of graphene 

[24]. GO contains even higher adsorption and electron-accepting 

abilities due to having more oxygen-containing functional 

groups, but it is an insulator [24, 25]. In other words, the rGO 

increases the BiVO4 surface area and elongates the lifetime of 

separated e-/h+ pairs via accepting electrons from BiVO4 (trapper 

and a co-catalyst) and so widens the BiVO4 photo-absorption 

range and enhances the accepted electrons mobility. Electron 

mobility occurs via the rGO extended π-π conjugation system. 

Careful consideration should be taken when compositing rGO 

with BiVO4 as too many rGO layers can adhere to the BiVO4 and 

block the visible light pathway to the BiVO4. rGO layers, in 

addition, can stack due to hydrogen bond formation between 

oxygen-containing groups, Vander Waal, and π-π stacking 

interactions. This stacking reduces the rGO surface area and 

causes BiVO4 agglomeration [26-29]. Improved visible-light 

photocatalytic activity results from BiVO4 effective narrow band 

gap, the trapping of electrons by r-GO and the wide r-GO surface 

area that allows extensive pollutants adsorption via 𝜋-𝜋 and 

hydrogen bonds interactions. 

Various applications of BiVO4 coupled with rGO composite 

photocatalysts have occurred like photocatalytic degradation of 

pollutants, water splitting, N2 fixation, and CO2 reduction. Some 

of these applications rely on BiVO4 holes as in photocatalytic 

pollutants degradation and photocatalytic water splitting, others 

rely on BiVO4 electrons as in photocatalytic CO2 reduction, and 

others depend on both holes and electrons as photo esterification.  

Photocatalytic degradation of pollutants  

Photocatalytic degradation of organic pollutants using 

photocatalysts has been widely used for air and water 

purification [30, 31]. Table 1 summarizes the photocatalytic 

activities of BiVO4 with rGO-based photocatalysts for 

degradation of organic pollutants on various conditions 

including band gap, dose of catalyst, rate constants, reactive 

oxygen species, type and power of light source, and cycling 

numbers. In photocatalytic degradation, rGO elongates the 

photo-induced e-/h+ pairs of m-BiVO4 via accepting electrons 

from the m-BiVO4 CB and thus holes accumulate in the VB [32, 

33]. The transferred electrons are injected into adsorbed O2 

molecules on rGO forming superoxide anion (O2
–) which reacts 

with water molecules forming hydroxide radical (•OH). rGO 

absorbs O2 due to the existence of surface oxygen containing 

groups. The accumulated holes react directly with the substrate 

or with water forming •OH. The O2
– is formed only on rGO as 

the BiVO4 CB is less negative than that of O2/ O2
– reaction (-0.33 

V vs NHE), whereas rGO mobiles accepted electrons easing 

their transfer to absorbed O2. •OH is formed from the holes when 

they have more positive potential than that needed for water 

oxidation (H2O/•OH of 2.70 V vs NHE), otherwise holes directly 

attack the substrate. Also, •OH can be formed from reacting 

hydroxide anion (OH-) with holes (OH-/•OH of 1.99 V vs NHE). 

The substrate here is referred to the organic pollutants as 

antibiotics, phenols and microorganisms [11, 12, 22, 23]. That is 

why in Table 1 the same pollutant, such as Methylene Blue 

(MB), may undergo degradation by h+, O2
– and •OH and in other 

cases by holes and O2
– only. In Table 1, all the Eg values of the 

composite are lower than that of the BiVO4 only due to: i) 

formation of Bi-C covalent bonds between the BiVO4 and rGO 

and increased BiVO4 crystallinity; ii) formation of an internal 

electric field between the m-BiVO4 and the rGO where the rGO 

fermi-level equilibrates with that of m-BiVO4 causing the 

bending of m-BiVO4 CB and VB downwards. These factors ease 

the electron migration from m-BiVO4 to rGO so that the e-/h+ 

pair lifetime is elongated allowing more time for the degradation 

of pollutants that need multi-electrons to change to benign 

products [34]; and (iii) increasing the surface area of exposed m-
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BiVO4 to different substrates [11, 12, 23]. For example, Duan et 

al. (2022) studied the impact of compositing r-GO with m-

BiVO4 on the photocatalytic degradation of rhodamine B (RhB). 

The study stated that the composite achieved 98.3% degradation 

efficiency, in 180 min., which was 1.3 times higher than that of 

m-BiVO4. The Eg reduced from 2.6 to 2.21 eV for the m-BiVO4 

and the composite, respectively. On the other hand, the 

composite specific surface area was more than double that of 

sole m-BiVO4 which increases the RhB adsorption [22]. The 

general mechanism of photocatalytic degradation of organic 

pollutants and photo reduction of metal ions such as Cr(VI) as a 

model pollutant by BiVO4 - r-GO is presented in Figure 1.
 

 

 

 

 

 

 

 

 

 

 

 

Abo El-Yazeed et al. (2021) showed that if m-BiVO4 is 

calcined to 700 °C, its Eg value reduces from 2.45 eV to 1.88 

eV. Furthermore, when this calcined m-BiVO4 binds to rGO, 

the Eg is lowered to 1.59 eV which is the lowest Eg value 

reported. Consequently, such composite shows extremely high 

photoabsorption, and more accumulated e-/h+ pairs. In 

addition, the times needed for 100% and 79% degradation of 

methylene blue (MB) and RhB by this catalyst were the 

shortest reported durations with 30 and 50 minutes for MB and 

RhB, respectively [34]. 

Azad et al. (2019) studied the photocatalytic reduction of some 

nitrobenzenes and nitrophenols to the corresponding amines 

using m-BiVO4 - r-GO composite. The composite attained 

100% conversion efficiency compared to only 11% by m-

BiVO4. The Eg was lowered from 2.41 to 2.08 eV for the m-

BiVO4 and the composite, respectively. Also, the rate of 

conversion increased by 10 times that of m-BiVO4 [35] .  

 

 

Kumar et al. (2021) studied the piezoelectric behavior of m-

BiVO4 and its impact on elongating the lifetime of e-/h+ pair 

added to rGO impact on MB photodegradation. They concluded 

that high adsorption capabilities and the long e-/h+ pair lifetime 

on m-BiVO4 surface boosted the rate of MB degradation at low 

light intensities. Piezocatalysis involves applying mechanical 

impact on an anisotropic (have anionic and cation crystal 

mismatch) semiconductor that polarizes the semiconductor into 

positively and negatively charged dipoles. Such polarization 

aids in separating the photoinduced e-/h+ pair of m-BiVO4 that 

elongates its lifetime. By the way, m-BiVO4 has crystal 

mismatches and so anisotropy exists. Mechanical stress can be 

induced by sonication. Sonication produces bubbles of 

extremely high energy that burst onto m-BiVO4 generating 

mechanical stresses. The collapsing of these bubbles generates 

very high temperatures (4000- 5000K) that are enough to 

thermally excite m-BiVO4 electrons (sonocatalysis) and 

produce photons that excite the same electrons 

(sonophotocatalysis). These latter influences cause more e-/h+ 

Figure 1. Charge separation mechanisms in the BiVO4-rGO system for photodegradation 

of organic pollutants and photoreduction of Cr (VI) ions. 
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pairs to form [36, 37]. The general mechanism of 

photocatalytic degradation of organic pollutants and photo 

reduction of metal ions by BiVO4 - r-GO is presented in    

Figure 2.

Table 1. BiVO4-rGO composite for photodegradation of organic pollutants. 

Target Pollutant 

Reactive 

Oxygen 

Species 

(ROS) 

Light Source 
Eg 

(eV) 

Time 

(min.) 
Kapp 

Catalyst 

Dose 

(g/L) 

Cycles 
Degradation 

(%) 
Ref. 

RhB and MO --- 

1 sun 

illumination 

(100 mW/cm2) 

--- 120  --- 5 --- [38] 

MB 
O2

– and 

•OH 

300 W xenon 

lamp 
2.45 190  --- 3 96.9 [39] 

RhB •OH, O2
–  2.1 180  --- 4 98.3 [22] 

Acetaminophen •OH, h+  2.45 150 0.0141 min-1 --- 4  [27] 

MB and RhB 
•OH, h+, 

O2
– 

 1.59 
30 (MB), 50 

(RhB) 

(MB) 0.09804    

min-1, 

(RhB) 0.05304 

min-1 

1 5 
100 (MB), 

79 (RhB). 
[34] 

BPA •OH (16.7 mW.cm −2) 2.44  

4.5 × 10−2 

mmol. g−1. 

min −1 

0.4  72 [23] 

RhB •OH, O2
– Direct sunlight. 2.1 120 

2.1606 x 

10–2 min-1 
0.4  92.51 [11] 

Caffeine  UV-C led lamp. 2.02 240 7 × 10−3 s−1 ---  100 [28] 

Tetracycline h+,O2
– 

55 W fluorescent 

lamp. 
2.21 50  ---  17 [12] 

Reactive Black 5 h+,O2
– 

1 kW xenon 

lamp 
2.05 3600  ---  95 [32] 

MB •OH, O2
– 

xenon lamp of 

300 W 
2.27 210 

0.0046 

min-1 
1 3 94 [29] 

2,4- 

dichlorophenol 
•OH, h+ 

simulated solar 

irradiation 
---  

0.00184 

min-1 
1  55 [40] 

Antifouling, MB •OH, O2
–  2.11 240 0.047 ---  94.77 (MB) [2] 

MB O2
– 150 W 2.40 180 0.0088 ---  82 [36] 

MB O2
– --- --- 180 --- ---  ~81 [37] 

MB O2
– 150 W --- 180 --- ---  ~52 [41] 

MB  1‐kW Xe‐lamp --- 90 --- ---  97 [42] 

Hexavalent 

chromium reduction 
 500 W Xe lamp 2.23  0.1560 ---  97.6 [26] 
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Photocatalytic water splitting and nitrate 

formation 

Most of the photoelectrochemical reactions are undertaken 

in a photoelectrochemical cell where the photoanode carries the 

m-BiVO4-rGO composite, and a positive applied potential bias 

attracts photoinduced electrons, causing holes accumulation that 

then react with water or N2 leading to O2 evolution or nitrates 

formation, respectively. On the other hand, photoinduced 

electrons migrate to the cathode where hydrogen evolution takes 

place in the presence of H+ or H2O [43, 44]. Table 2 summarizes 

the photocatalytic activities of m-BiVO4-rGO photocatalysts for 

H2 production and nitrate formation on various conditions. Yaw 

et al. (2020) achieved a very high photocurrent (2.1 mA/cm2) of 

hydrogen evolved using m-BiVO4-rGO- via sandwiching rGO 

between m-BiVO4 (n- type) and vanadium pentoxide (V2O5) (p-

type). m-BiVO4 is the electron sensitizer that transfers electrons 

to V2O5 via rGO and in reverse, the V2O5 transfers holes to the 

m-BiVO4. These two transfers elongate the electron-hole pairs 

lifetime formed on m-BiVO4 and accumulate more holes on m-

BiVO4 and more electrons on V2O5, thereby easing higher O2 

and H2 production rates, respectively. Figure 3 represents the 

mechanism of charge separation for photocatalytic water 

splitting in the system of m-BiVO4-rGO composite [44]. Liu et 

al. (2022) studied the impact of engineering oxygen vacancies 

(Ov) defects on the m-BiVO4 surface on H2O photooxidation 

where Ov trap photo-induced electrons elongating e-/h+ pair 

lifetime, added to the impact of contacting rGO to m-BiVO4. 

They stated that the photo-absorption intensifies on this 

composite due to generating a defect state below the CBM easing 

an intra-band transition at lower Eg values. They also added that 

the Ov present in coordination-unsaturated metal atom sites 

adsorb H2O molecules easily increasing the rate of O2 evolution. 

The percentage of O2 evolved was interestingly 209% higher 

than that of normal m-BiVO4. Also, the apparent quantum yield 

was ~23.19% [43]. Shao et al. (2022) [45] studied using 2D m-

BiVO4 - 2D rGO composite relying on the marvelous advantages 

of having a 2D interfacial contact with an extensive surface area 

on N2 photooxidation to NO3
-. The apparent quantum efficiency 

was 0.64 and the rate of N2 oxidation was ~8 times higher on the 

composite than the normal m-BiVO4.

Figure 2. Piezo-catalytic reaction mechanism using the m-BiVO4-rGO system. 

https://www.sciparkpub.com/article-details/58
https://doi.org/10.62184/acj.jacj1000202420


 
Advanced Carbon Journal, 2024, Vol. 1, Iss. 1, 20-32   

 

DOI: 10.62184/acj.jacj1000202420 

 

                                                                                                                                                                                                                                                                                                                               
  

  
26 

  

 

Review Article 

Photocatalytic CO2 reduction 

From the perspective of developing sustainable energy, one 

of the best ways to address the serious problems of global 

warming and fossil fuel shortages would be to use solar energy 

to convert the rapidly rising greenhouse gases into valuable 

energy-bearing compounds (such as carbon monoxide (CO), 

methane, and methanol). CO2 photoreduction to C1 products on 

m-BiVO4 is unfeasible as its CB-minimum potential is less 

negative than CO2 reduction potential [46,47]. So, the CB of m-

BiVO4 should be negatively uplifted to overcome the CO2 

potential. Such uplift is attained by further distorting the m-

BiVO4 to destabilize both the CB-minimum and the VB-

maximum. Doing so, CB is negatively raised while Eg is kept as 

narrow as possible.  

Again, rGO accepts electrons from the m-BiVO4 elongating the 

e-/h+ pairs lifetime to allow the multi-electrons CO2 reduction to 

occur on m-BiVO4. For example, Chen et al., 2019 [48] studied 

using m-BiVO4 quantum dots (BQDs) to elevate the CB-

minimum to negative potentials that surpass the CO2 reduction 

potential. Quantum dots are merited by the property of enlarging 

the Eg values as their sizes are reduced. In this work, the Eg 

increases from 2.4 eV for bulk m-BiVO4 to 2.7 eV for BQDs. 

BQDs also dramatically increase the surface area of m-BiVO4 

allowing more CO2 adsorption. Again, the rGO accepts electrons 

from BQDs, thereby elongating the lifetime of e-/h+ pairs.

 

 

 

 

 

 

Figure 3. Charge separation mechanism for photocatalytic water splitting in the m-BiVO4-rGO. 

https://www.sciparkpub.com/article-details/58
https://doi.org/10.62184/acj.jacj1000202420


 
Advanced Carbon Journal, 2024, Vol. 1, Iss. 1, 20-32   

 

DOI: 10.62184/acj.jacj1000202420 

 

                                                                                                                                                                                                                                                                                                                               
  

  
27 

  

 

Review Article 

Table 2. BiVO4-rGO composites for water splitting, CO2 reduction and N2 fixation reactions. 

Application 

Type of 

Photocatalyst 

(powder or 

thin film) 

Light 

Source 

(Power) 

Stability Eg (eV) Photocurrent 
Reaction 

time 
Ref. 

H2 production Powder 
simulated 

solar light 

29 on–off 

irradiation 

cycles 

2.48 (BVO/rGO- 

5%), 2.44 for 

BVO/rGO- 

10%. 

377.9 µA cm−2, 

(BVO/rGO-5%), 

BVO/rGO-10% 

(554.4 µA cm−2) 

 [33] 

H2 production   Thin film 

150 W with 

an output 

intensity of 

100 

mW/cm2. 

  2.1 mA/cm2  [44] 

H2 production Powder 
1‐kW Xe-

lamp 
   2 hours [43] 

Photo- 

Esterification 
Powder 1040 W/m2 6 cycles   3 hours [49] 

CO2 reduction Powder 300 W 5 cycles 2.7   [48] 

N2 fixation to    

nitrates 
Powder --- 

12 hours long 

term  stability 
 1.45 mg h-1 g-1  [45] 

H2O2 

production 
Powder --- 

4 cycles and 

each cycle is 

3 hours. 

2.06 1.55 μA/cm2  [4] 

Water 

Oxidation 
Powder ---  

Ov-poor  

BG= 2.49,  

Ov-rich  

BG= 2.51 

The Ov-rich BG 

exhibited 650.0 

μmol/g of O2 yield 

5 hours [43] 

H2 production  
200 W Hg- 

Xe arc    lamp 
 2.44 11.5 μmol. g-1. h-1  [23] 

Conclusion and future prospective 

In summary, this mini-review highlights the versatile 

properties and potential applications of m- BiVO4-rGO 

composite photocatalysts. Obviously, m-BiVO4 solely attains 

various reactions at low rates due to its low surface 

conductivity, adsorption ability and high rates of e-/h+ pairs 

recombination. BiVO4 composites have proven to be one of 

the most promising photocatalyst candidates for various 

applications. There is no doubt that the rapid growth of BiVO4 

based composite photocatalysts will occur in the near future. 

To date, although considerable progress has been achieved in 

the recent years, there are still many challenges to deeply 

understand the enhancement of the graphene family when 

coupled with BiVO4. Graphene supports, especially rGO, are 

used to mitigate such drawbacks as they have oxygen 

functional groups that can disperse m- BiVO4 and achieve 

intimate contact that eases electrons transfer from the m-

BiVO4 CB to graphene Fermi level. Notably, most of the m-

BiVO4 is composited with rGO and such composite is used 

mostly in photocatalytic reactions where oxidation is targeted 

such as photocatalytic degradation and water splitting. This is 

because the VBM potential of m-BiVO4 is sufficiently positive 

to overcome the potential barriers needed for these reactions. 

In such reactions, rGO accepts electrons that transfer to 

adsorbed O2 forming superoxides that react with the substrate 
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and/or these superoxides are converted to hydroxyl radicals 

that also attack the target substrate. However, the cyclability 

tests are not significantly done for these composites, and their 

stability needs to be further analyzed. 

List of Abbreviations 

VBM  Valence Band Maximum 

CBM Conduction Band Minimum 

MB Methylene Blue 

RhB Rhodamine B 

BPA Bis Phenol A 

TC Tetracycline 

BQDs Bismuth Quantum Dots 

r-GO Reduced graphene oxide 
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